An Overview of ViSiCAST

Virtual Signing: Capture, Animation, Storage and Transmission

John Glauert, Andrew Bangham, Stephen Cox, Ralph Elliott, Ian Marshall

Sanja Rankov, Mark Wells

ViSiCAST Aims

Improved access for deaf citizens ... information and services ... preferred medium is sign language

Builds on SignAnim and Tessa

ViSiCAST Project

Extend applications of virtual signing
 Target to natural sign languages

 BSL (British Sign Language) rather than
 SSE (Sign-Supported English)

 Improve animation technology

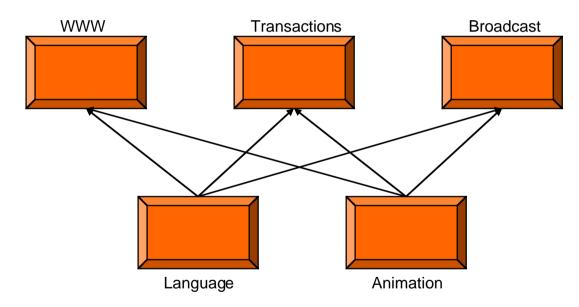
- increasingly natural avatars
- easier but more accurate sign capture

ViSiCAST Partners

- ITC, UK : Project coordination
- IRT, Germany : Broadcast technology
- **TeleVirtual, UK : Virtual humans**
- IDGS, Hamburg, Germany :

Sign language notation

UEA, Norwich, UK : Language processing, Speech, and Image


ViSiCAST Partners

INT, Paris, France : Animation standards
 IvD, Netherlands : Multimedia content creation
 Post Office, UK : Interactive dialogue systems

RNID, UK : Monitoring and evaluation

ViSiCAST Structure

Applications

Enabling Technologies

Multimedia and WWW Applications

Adding signing services to multimedia

- improves access to information
- enhances communication for deaf people

Browser plugin

- accurate signing of prepared content
- simplistic translation of general text
- Gesture Markup Language (GML)

Face-to-Face Transactions

Post Office, Advice Services, Shops More flexible speech recognition

- " Do you want first or second class postage?"
- " First or second?"

Dialogue between customer and clerk

- recognition of a very few signs
- translation to text or speech for clerk

Television and Broadcast

Developing transmission technology

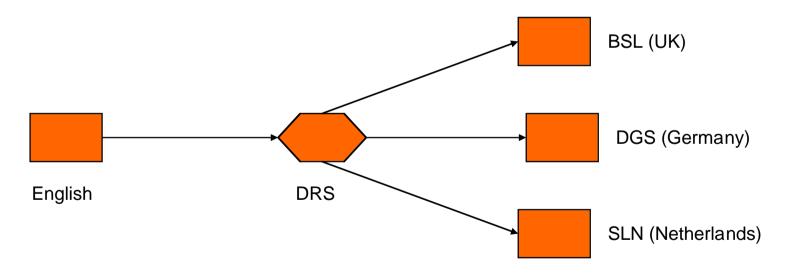
- virtual signer in set-top boxes
- transmission of signing through GML

Incorporation in emerging standards

- Multimedia Home Platform (MHP) in DVB
- face and body animation through MPEG-4
- GML within Multimedia Content Description Interface of MPEG–7

UEA, Norwich and IDGS, Hamburg

Translate English text to European sign language BSL, DGS, SLN


Define Gesture Markup Language an XML-compliant notation for gestures

English to Signing

Translation via DRS

Discourse Representation Structure

English to Signing

Morphology: " phonemes" for signs

- hand shape
- hand orientation
- position in " signing space"
- movement
- Directional Verbs
 - I give X to you
 - **You give X to him**

GML Notation for Signing

Hamburg Notation System

- HamNoSys
- Code for hand shape and orientation, location, and movement
- **Gesture Markup Language**
 - **XML Compliant (W3C standards)**
 - Builds on HamNoSys

GML Notation for Signing

Gloss level

- GIVE_BOOK_I_YOU
- code for a complete sign
- similar to SignAnim and Tessa approach
- HamNoSys level
 - encodes sign "phonemes" as in HamNoSys

Articulation level

- represents captured or synthesised motion
- encodes arbitrary gestures

GML Notation : Illustration

```
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
```

```
<!DOCTYPE gml SYSTEM "gml.dtd" >
```

<gml>

```
<avatar url="Tessa.ava" id="A" alt="Tessa" />
```

```
<sign gloss="TO-AND-FRO">
```

<hamnosys>

```
<righthandgesture>
```

```
<handshape form="fist" thumb="across" />
```

```
<handlocation where="shoulder" offset="rightOf"/>
```

```
<handorientation extfinger="upN" palm="down"/>
```

```
<movement direction="horW" repetitions="repeat1" repeatmode="fromstart"/>
```

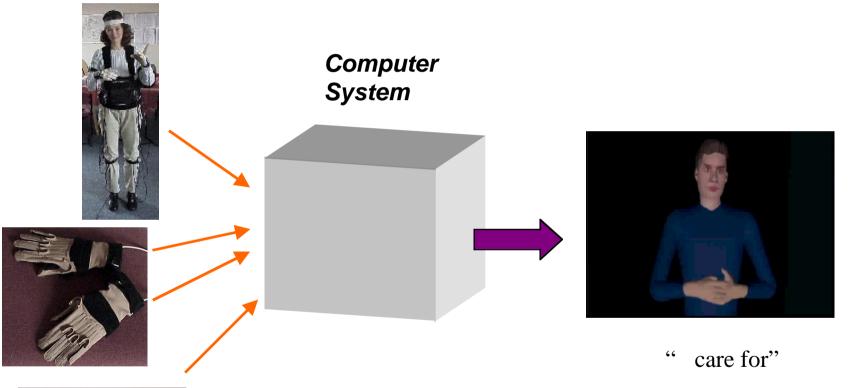
```
</righthandgesture>
```

```
</hamnosys>
```

</sign>

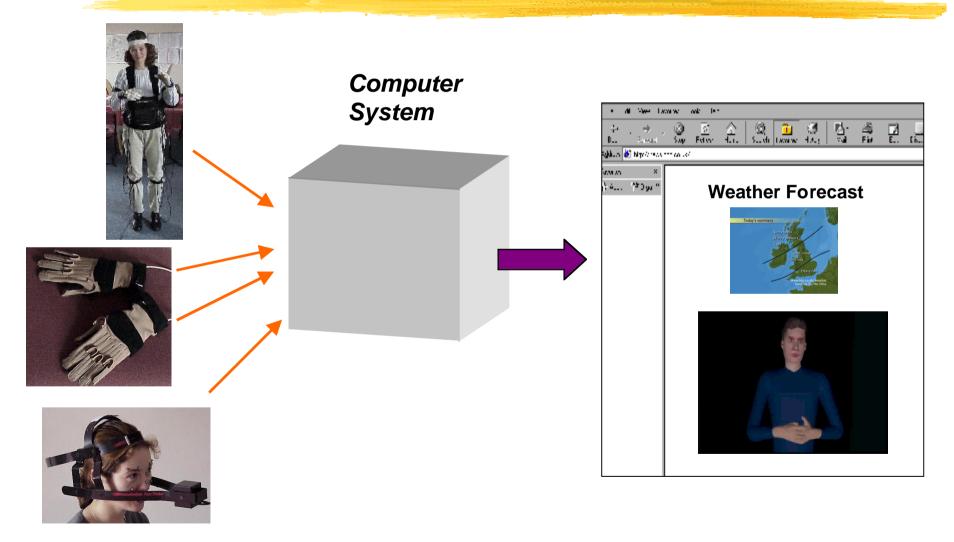
</gml>

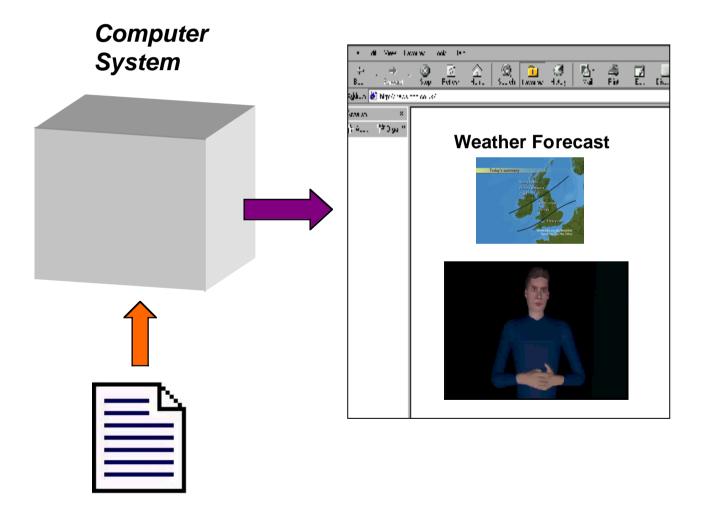
Animation & Modeling


Overview of the ViSiCAST Project

Sanja RankovMark Wells

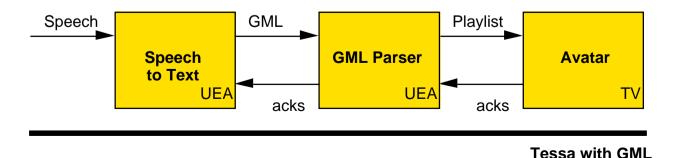
Motion Capture, Calibration and Display System




Motion Capture, Calibration and Display System

Motion Capture, Calibration and Display System

Post-processing


- Motion data decomposed into individual recorded signs
- Signs are blended and played back through an avatar that can sign a sentence

Improvements for GML driven player

- x identification of basic physical avatar
 features
- ★ development of methods for generation of realistic gestures

- Ambitious three-year project
- Novel computational linguistics work to generate and represent signing
- Advanced avatar technology for signing virtual humans
- Access to services for deaf citizens

