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Abstract
We present a generic and robust method for

model-based global 3D head pose estimation in
monocular and non-calibrated video sequences. The
proposed method relies on a 3D/2D matching between
2D image features estimated throughout the sequence
and 3D object features of a generic head model.
Specifi call y, it combines motion and texture features in
an iterative optimization procedure based on the
downhill simplex algorithm. A proper initiali zation of the
pose parameters, based on a block matching procedure,
is performed at each frame in order to take into account
large amplitude motions. For the same reason, we have
developed a non-linear optical flow-based interpolation
algorithm for increasing the frame rate. Experiments
demonstrate that this method is stable over extended
sequences including large head motions, occlusions,
various head postures and lighting variations. The
estimation accuracy is related to the head model, as
establi shed by using an elli psoidal model and an ad hoc
synthesized model. The proposed method is general
enough to be applied to other tracking applications.
Keywords : 3D object model, monocular video
sequences, head tracking, 3D pose estimation, 3D/2D
registration, 3D/2D features, motion, optical flow, block
matching, texture, temporal interpolation, downhill
simplex method.

1. Introduction

The main problems in model-based video coding
techniques deal with object tracking and 3D pose
estimation in complex scenes. Given a 3D global object
model, pose estimation can be defined as recovering the
model parameters (translations, rotations and scaling
factor) so that the projected 3D model features match the
2D image features. In the particular case of human head

tracking and related 3D pose estimation in video
sequences, the encountered diff iculties are due to head
geometry and complex movements including large
deformations. In addition, natural scenes often involve
arbitrary and complex background and foreground
texture information together with unknown and variable
lighting conditions. The most common approach for
model-based coding of facial image sequences [1-5]
decomposes the head model tracking problem into two
parts : 1) global model adaptation by taking into account
the motion of the entire head, and 2) local model
adaptation in order to simulate the local deformations of
the face characteristic components. Here, we adopt such
an approach and address the issue of 3D global
model-based head pose estimation in monocular image
sequences acquired by using an uncalibrated and mobile
camera under non-stable lighting conditions. The
principle of the method proposed here is a 3D/2D
matching between 3D model features and 2D image
features by using a downhill simplex-based optimization
procedure [6]. Features based on motion (optical flow
and block matching) and texture are taken into account.
In order to guarantee the stabilit y and the estimation
accuracy in case of large amplitude motions and lighting
condition variations, the initial frame rate is increased by
applying a non-rigid and temporal interpolation
procedure constrained by the displacement field and
modeled as a multiple source wave motion [7].

In Section 2, we propose an analyticall y-based
approach for generating 3D head-li ke surfaces with an
arbitrary degree of approximation. Section 3 describes
the temporal interpolation procedure based on an
undulatory motion modeling. In Section 4, the principles
underlying the 3D estimation procedure are introduced.
The cost function to be minimized is defined as an error
function involving optical flow and texture features. A
visibilit y principle is then taken into account within the



cost function, in order to increase the robustness and
accuracy of the 3D pose estimation. The initiali zation
step is performed by applying a block matching
procedure on each frame. In Section 5, the obtained
results are presented and discussed for both simulated
and real image sequences.

2. 3D head modeling

The most popular approaches for synthesizing 3D
head-li ke surfaces are based on analytical representations
or polygonal meshes. We adopt the former representation
which offers the advantage of compactness and easy
manipulation. In our experiments, the non-deformable
3D head is modeled as an elli psoidal surface or,
alternatively, as an ad hoc Fourier-synthesized surface.
In order to obtain a head-li ke closed surface, a set of
points corresponding to the head profile, viewed
according to three projections, is fitted by a limited
Fourier expansion of the surface.

(a) (b)

Figure 1. (a) Fitted head profiles and
(b) Head-like synthesized surface, with
respect to three viewpoints.

The approximation accuracy depends on the order of the
expansion and on the sampling density along the profile.
Figure 1 shows the surface obtained by using a Fourier
expansion of order 4 using spherical coordinates. Results
are similar for higher orders.

3. Undulatory-based modeling for sequence
interpolation

By using the displacement field computed between
two sequence frames, a non-linear and non-rigid
interpolation method for increasing the frame rate is
developed as follows [7]. Let )(0 xI  and )(1 xI  be two

similar images and ]1,0[∈α  a real number. Here, x

represents the 2D spatial coordinates in the image plane.
Let us assume that we aim at generating an intermediate
image )(xαI  in a continuous fashion, so that it

corresponds to the first image for 0=α  and to the
second one if 1=α . Using an optical flow algorithm, we
compute the displacement fields )(01 xv  (respectively

)(10 xv ) between frames 0I  and 1I  (respectively 1I  and

0I ). The image αI  is then generated pixel by pixel in

the following way : for each location x , the k  nearest
neighbors among the points )(01 xvx ⋅+α  and

)()1( 10 xvx ⋅−+ α  are selected. Denoting by

),(,),,(),,( 2211 kk yxyxyx �  these pixel/neighbor

pairs, let )(il be the image index defined as follows :
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for ki ,,2,1 �= . The α -intermediate image at location

x  is computed as the following linear combination :
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Here, d denotes some distance in the 2D plane, chosen in

practice as the 1L -distance.
This interpolation method can be related to wave

propagation theory. Here, according to the superposition
principle, the intermediate image is generated by a group
of waves emitted from various sources (pixels) located in
the neighborhood of the current pixel. We have shown
that such a generating process is able to overcome the
limitations of standard linear interpolation methods and
to control the continuity of the resulting displacement
field.

Using this method, we have properly interpolated both
rigid head motion and facial deformations. The
corresponding results are presented in Figure 2, where
the displacement fields have been computed using the
Quénot's algorithm for estimating optical flow [8].



(a)

(b)

(c)

(d)

Figure 2. (a,c) Original and (b,d)
interpolated images.

4. 3D/2D matching principle and 3D pose
estimation

The developed 3D head pose estimation method is
based on a 3D/2D matching between 3D model features
and 2D image features. The model features taken into
account correspond to the geometry of the 3D model,
while the image features refer to the computed optical
flow in the head region and to the head texture. The
texture feature is solely used as a measure of the
matching accuracy between model and image data. The
optical flow contributes to the matching process at
various levels. Basicall y, optical flow provides useful
synthetic and global information for guiding and
controlli ng the matching procedure. Moreover, optical
flow is also used to increase the frame rate when large

displacements occur. Finall y, displacement field
discontinuities can be exploited in order to discriminate
occluded and non-occluded head regions.

Within the 3D/2D matching procedure, the parallel
projection model is considered. In the 3D camera
coordinate system, the pose of a rigid object is defined by
means of three angles, two translation parameters and a
scaling factor, measured with respect to a reference object
position.

The estimation step is achieved by applying an
iterative updating procedure. Assuming that the

estimated pose vector of the model in the thn  sequence
frame, denoted by np̂ , is known, an error-function which

measures the discrepancy between the 3D model features

corresponding to an arbitrary pose p and the th1+n
frame features, denoted by )ˆ,( nE pp , is defined. An

updated estimate of the pose vector, 1ˆ +np , minimizing

)ˆ,( nE pp  with respect to p , is then computed by using

the downhill simplex method [6].
The error-function is defined according to the

following steps :

•  when the sole texture is taken into account, a 2D-3D
head texture mapping from this frame onto the model
surface is performed, yielding a textured model. The
difference between the projected texture of the model
and the texture of the current frame, denoted by

textureε , provides a matching accuracy measure :
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Here, nF  and 1+nF  denote the previous and the

current frame respectively, π  is the projection
transform, pτ  is the 3D geometrical transform which

maps the model from the reference position into the
p -position, nI  is the set of all the visible points of

the model in the np̂ -position and ||||⋅  denotes the
1L -norm.

Concerning optical flow-based 3D head tracking, a
matching accuracy measure on the current frame,
denoted by flow  opticalε , is defined as the difference

between the displacement field estimated in the head
region (using some optical flow algorithm) and the
projected 3D displacement field induced by the model
rigid motion :
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where v̂  denotes the displacement field computed via



the optical flow algorithm.
A third possibilit y consists in combining both texture
and optical flow for defining a measure of the
discrepancy between the 3D model features and the
current frame features. In this case, the error ε  is
expressed as a linear combination of textureε and

flow  opticalε  : flow  opticaltexture εεε ⋅+⋅= ba .

•  the model points close to occluding contours, that
may vanish from a frame to the next one, are a
possible source of estimation errors. We define a
visibilit y index as a positi ve function on the model
surface in a given position, which penalizes the points
close to occluding contours; whenever the model is
convex, a simple way to define such a function is to
consider the projection of the model surface normal to
the perpendicular direction on the image plane.

•  the estimation procedure may be seriously influenced
by occluding objects that move fast with respect to the
head. The presence of such an object will break the
regularity of the displacement field in the head
region. Consequently, a simple rule can be derived in
order to detect the occluded regions : if in a region the
displacement field computed via the optical flow
algorithm is similar to the displacement field induced
by the model rigid motion, then the region is not
occluded and vice versa. By using a simple
distance-based classification of the displacement field
related to the model one, we associate a binary
occlusion index with each point of the head model in
the pose estimated for the previous frame.

Combining these three principles, the error-function E is
defined as one of the three previously-defined error
measures textureε , flow  opticalε  or ε , where the integrands

are locall y weighted by the product of the visibilit y index
and the occlusion index. An accurate 3D head pose
estimate corresponds to the global minimum of E.
Detecting this global minimum strongly depends on the
initiali zation of the minimization procedure. Here, the
initiali zation step is achieved by performing a block
matching on the head pixels between the previous and
the current frames.

5. Results

In order to perform a quantitative evaluation of the
proposed 3D pose estimation algorithm [9], three
synthetic image sequences were generated as follows :

•  3D head pose parameters were automaticall y
extracted in three real image sequences corresponding
to a slowly moving person ("Sorin" sequence), a
rapidly moving child ("Corneliu" sequence) and a

very rapidly moving person ("Armel" sequence);

•  a 3D mesh head model, textured in a reali stic
manner, was animated with respect to these 3D pose
parameters and

•  the textured and animated head model was projected
into a video sequence representing an off ice
background captured with a mobile camera.

Several synthetic images generated in this way are
presented in Figure 3.

Figure 3. Images synthesized from the test
sequences.

A statistical analysis of the pose parameter estimation
errors has been performed in order to evaluate the
performances of the proposed algorithm. Figure 4 shows
the error distribution functions of the head pose
parameters computed for all the synthetic images (more
than 600). Here, α , β  and γ  denote the absolute errors

of the rotation angle estimates (expressed in degrees),
with respect to z, x and y axis, respectively, in a
coordinate system having the x and the y axis in the
image plane; xt  and yt  represent the absolute errors of

the translations estimates (in pixels) and s  is the relative
error of the scale factor estimate (expressed in percents).
For all the test sequences, registration failure occurs after
a few tens of frames when only optical flow-based
estimation is performed. As a general remark, combining
texture and optical flow information leads to a more
accurate pose estimation, especiall y when fast head
rotations occur. In our experiments, the values of the
weighting coeff icients a and b are 1 and 2 respectively.
For 90% of test images estimation errors are less than 3º
for rotation angles, 2 pixels for translation components
and 8% for the scaling factor.

The 3D pose estimation algorithm was tested on 6
natural image sequences of different types: inside or
outside scenes,  moving or static camera/background, and
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Figure 4. Error distribution functions of the head
pose parameters corresponding to the synthetic
image sequences. Dalpha (Dbeta, Dgamma, Dtx,
Dty and Ds, respectively) denote the distribution
function of alpha (beta, gamma, tx, ty and s,
respectively).

presence or absence of head occlusion. Several testing
results are presented in Figure 5, where the head model
in its estimated pose has been superimposed in white.
The experiments demonstrate the stabilit y of the
algorithm and the accuracy of the 3D pose estimation for
the following configurations :

•  mobile camera;
•  mobile background;
•  large amplitude camera zoom;
•  partial head occlusions;
•  non-stable lighting conditions.

6.  Conclusion and future work

The proposed 3D head pose estimation method relies on
a 3D/2D matching between 2D image features estimated
throughout the sequence and 3D object features of a
generic head model. In order to take into account large
amplitude head motions, we have developed a non-linear
optical flow-based interpolation algorithm for increasing
the frame rate. We have demonstrated that this method is
stable over extended sequences including large head
motions, occlusions and various head postures. Even
though this technique has been designed for model-based

object tracking in the context of head tracking, the
method is general enough to be applied to other tracking
problems. Our future work will deal with the analysis and
synthesis of facial image sequence in model-based image
coding.
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Figure 5: 3D head pose estimation results for the (a) "Sorin", (b) "Corneliu" and (c) "Armel"
sequences, using a Fourier-synthesized head model.


