The Development of Language Processing Support for the ViSiCAST Project

Ralph Elliott, John Glauert, Richard Kennaway, Ian Marshall
[+Kevin Parsons, Éva Sáfár]

{re,jrwg,jrk,im}@sys.uea.ac.uk

School of Information Systems, UEA Norwich, UK

ASSETS 2000, Arlington VA, 2000-11-14
Outline

- **ViSiCAST – Introduction/Background**
- **Language Processing in ViSiCAST**
 - General Approach
 - Natural Language to Semantics
 - Signing Gesture Language
ViSiCAST Project

- **Virtual Signing** – Capture, Animation, Storage and Transmission
- **Aim:** “… support improved access by deaf citizens to information and services in sign language”.
- **Funded under EU Framework V Programme** [+ITC and PO in UK]
 - “pre-competitive” research
ViSiCAST—Background

- Builds on Two Earlier UK Projects...
- *(ITC) Simon-the-Signer* (97-99)
 - ITC (UK Independent Television Commission), Televirtual, UEA Norwich
- *(PO) Tessa* (98-00)
 - Post Office, Televirtual, UEA Norwich
- Both based on virtual human signing
 - using Televirtual’s motion-capture driven avatar technology
Motion-Capture Based Virtual Human Signing

- **Motion Capture Streams**
 - body
 - magnetic tracking
 - face
 - reflective markers + head-mounted camera
 - hands
 - gloves with bend-sensors
Virtual Humans (Avatars)

- **Bones-Set**
 - lengths
 - interconnection topology ("joints")
 - configure: by specifying angle and orientation at each joint

- **Rendering**
 - attach mesh ("wire-frame") to Bones-set
 - apply texture-mapping to mesh

- **Animation**
 - sequence of rendered frames
 - each defined by a Bones-Set configuration
From Capture to Signing
(Simon & Tessa)

• Capture “clips” of signing
 - based on vocabulary for chosen subject area
 - requires calibration – match signer to avatar

• Segment/Edit clips
 - save as files, one per sign

• Generate Stream of Sign Names
 - for required script

• Feed Sign Stream to Avatar
 - acts as a “Player” for Stream (with blending)
“Sign Supported” vs. “Authentic” Sign Languages

- In UK:
 - SSE Sign-Supported English
 - one sign per word (approx.)
 - follow English word order
 - BSL British Sign Language
 - one sign per concept
 - use of “signing space” around signer’s body
 - has own word order, morphology
 - SSE and BSL both utilize finger-spelling
Simon & Tessa

- **Simon-the-Signer** [Broadcast TV]
 - generate signed accompaniment to broadcast, using Teletext stream as source
 - SSE

- **Tessa** [Retail, PO]
 - convert counter-clerk’s voice input to text, using speech recognizer
 - generate sign stream from text
 - BSL, but limited repertoire
ViSiCAST Partners (UK)

- ITC
- Post Office
- Televirtual, Norwich
- School of Information Systems, Norwich
- RNID
 - Royal National Institute for Deaf People
ViSiCAST Partners - contd.

- **IDGS, University of Hamburg**
 - Institute for German Sign Language and Communication of the Deaf

- **IRT, München**
 - Institute für Rundfunk Technik

- **INT, Evry (Paris)**
 - Institute National des Télécommunications

- **IvD, Sinkt-Michelsgestel (Netherlands)**
 - Instituut voor Doven
ViSiCAST: Application Areas

- Broadcasting
- Retail - “face-to-face”
- WWW
ViSiCAST: Development of Supporting Technologies

- Avatar Technology
- Language Processing
NL Processing – ViSiCAST Approach

• Develop semi-automated translation system
 – automated transformations
 – augmented by user-interaction …
 • to resolve ambiguity
 – e.g. “give”, “inject”
 • to improve quality
Stages on Path from NL to Signing

1. NL (English)
2. Semantic Representation
3. Morphology (Sign-Language Specific)
4. Signing Gesture Notation (SiGML)
5. Animation
... Compare/Contrast with pre- ViSiCAST:

- **Off-line preparation**
 - Motion Captured clips of signing
 - Segmentation/Editing of clips
- **From Script to Signing**
 - From Text to Stream of Sign File Names
 - Feed Sign Stream to Avatar as “Player”
ViSiCAST: Route To National Sign Languages

English → Semantic Representation (DRS) → BSL (UK)

Semantic Representation (DRS) → DGS (Germany)

Semantic Representation (DRS) → SLN (Netherlands)
Stages: NL to Semantic Representation

1. NL (English)
2. Semantic Representation
3. Morphology (Sign-Language Specific)
4. Signing Gesture Notation (SiGML)
5. Animation
Natural Language Parsing

- **Use “Link Grammars” Parser**
 - Sleator & Temperley, CMU

- **Represent each sentence as a linkage:**
 - a set of links

- **Each link:**
 - identifies a specific grammatical relationship between a pair of word occurrences in the sentence
CMU Linkage Diagram

- "Every nice, fat man laughs."
Linkage as a Set of 7-tuples

- \[
[[\{m, 5, 0, Wd, Wd, Wd, 5\}, \\
{\{} , 10, 0, Xp, Xp, Xp, 10\}, \\
{m, 4, 1, Ds, Ds, Ds, 5\}, \\
{m, 1, 2, Xc, Xc, Xc, 3\}, \\
{m, 3, 2, A, A, A, 5\}, \\
{m, 1, 4, A, A, A, 5\}, \\
{m, 1, 5, Ss, Ss, Ss, 6\}, \\
{m, 1, 6, MV, MVp, MVp, 7\}, \\
{m, 2, 7, J, J, J, 9\}, \\
{m, 1, 8, Ds, Ds, Ds, 9\}, \\
{\{} , 1, 10, RW, RW, RW, 11\}]]\]
Semantic Representation

- Based on Discourse Representation Theory (DRT) [Kamp & Reyle, 1993]
- Represent sentences:
 - modified form of Discourse Representation Structures [DRSs]
 - “nested-box” representation …
Box Representation for DRS

- U: set of referents (variables)
 presently in use
- Con: set of
 conditions
 constraining the referents

Fig 1 The template for a simple DRS.
Features of DRS Scheme

- **Each proposition is labelled**
 - allows incorporation of temporal information:
 - $t_1: \text{when}(e_1), \ t_1=\text{now}, \ e_1: \text{happy}(\text{Mary})$

- **Use λ-terms to represent DRS fragments with place holders**

- **Supports distinctive characteristics of SLs:**
 - “Topic-Comment” structure
 - “Directional” verbs
 - e.g. give (who-whom?)
Route from NL Sentence to DRS

- Sentence → CMU Parser Linkage
- Place links in order for construction
- Look up λ-abstraction for each link
- Reduce (β-convert and DRS-merge) to obtain final DRS
Transformation to DRS–Example

• “Every nice man laughed.”

• Links for “every nice man”:

 \[m, 1, 2, A, A, A, 3 \] nice-man
 \[m, 2, 1, Ds, Ds, Ds, 3 \] every-man
 \[m, 3, 0, Wd, Wd, Wd, 3 \] ///-man

... in order of processing
\textbf{\textit{\(\lambda\)-Term Example}}

- \textit{\(\lambda\)-term corresponding to adjective "nice"}:

\begin{verbatim}
\lambda(P, \lambda(Y, merge(drs([], [Lab:Cond]), P@Y)))
\end{verbatim}

\textit{where Cond = nice(Y)}
(a) Apply Noun to Adjective

- \(\lambda (G14416, \ Y \ \text{merge} \ \text{dr s}([], \text{dr s}([], \{\text{attr}(_G14414): \text{nice}(G14416)\}), \{\text{attr}(_G14414): \text{nice}(G14416)\})) \text{dr s}([], \text{dr s}([], \{\text{a}(_G14598): \text{man}(G14416)\})) \)
(b) Apply Result (a) to Determiner

- \(\lambda(G14509, \text{verb phrase}) \)
 - \(drs([], \text{verb phrase}) \)
 - \([\text{merge}()] \)
 - \(drs([v(G14504)], \text{v0}) \)
 - \([q(G14502):\forall(v(G14504))] \)
 - \(\text{merge}() \)
 - \(drs([], \text{man}) \)
 - \([\text{attr}(G14414):\text{nice}(v(G14504))] \)
 - \(drs([a(G14598):\text{man}(v(G14504))]) \)

\((> G14509_v(G14504)) \)
(c) Apply Verb to Result
(b)

- \[\text{drs}([], \text{merge}(\text{drs}([\text{v(G14504)]}, \text{q(G14502):forall(v(G14504))}]), \text{merge}(\text{drs}([], \text{attr(G14414):nice(v(G14504))}]), \text{drs}([], \text{a(G14598):man(v(G14504))})))\]

\[\text{drs}([], \text{t(G17334):when(e(G17332))}, \text{t(G17334)<now, e(G17332):laugh(v(G14504))})\]
Final DRS for Example

- “Every nice man laughed.”

- \(\text{drs}([], \text{drs}([v(0)],
 \begin{align*}
 &\quad [q(0):\forall(v(0)), \text{attr}(0):\text{nice}(v(0)), \\
 &\quad \quad a(0):\text{man}(v(0)))]
 \end{align*}
\)

\(\geq \text{drs}([],
 \begin{align*}
 &\quad [t(0):\text{when}(e(0)), t(0)\preceq \text{now}, e(0):\text{laugh}(v(0))]
 \end{align*}
\)

)
Box Diagram for Final DRS in Example
Current Status – Coverage

- Transitive/intransitive verbs
- Temporal auxiliaries
- Passive verbs
- Imperative sentences
- Prepositional phrases on nouns and verbs (location only)
- Adjectives (any number)
- Determiners (indefinite, definite)
- Pronouns (but work on co-reference is in progress)
- Relative clauses (subject and object)
- Questions
- Proper Nouns
Stages– Morphology

1. NL (English)
2. Semantic Representation
3. Morphology (Sign-Language Specific)
4. Signing Gesture Notation (SiGML)
5. Animation

• e.g. Morphology for:
 “Indeed, I’ll give the book to Tim.”
Morphology – (Projected) Representation

[Example due to Thomas Hanke, IDGS, U Hamburg]
Stages – SiGML

1. NL (English)
2. Semantic Representation
3. Morphology (Sign-Language Specific)
4. Signing Gesture Notation (SiGML)
5. Animation
SiGML

- **Signing Gesture Markup Language**
- **Based on:**
 - HamNoSys - Hamburg Notation System
 - XML - Extensible Markup Language
HamNoSys

• **General notation for signing**
 – originally defined primarily for purposes of recording, transcription, study of signing

• **Intention:**
 – capable of representing any sign language
 • *but a few enhancements in area of non-manual features are needed*

• **Defines**
 – semantic model for signing gestures
 – “pictographic” notation
HamNoSys Semantic Model – Manual Gestures

- **Hand Configuration**
- **Location**
 - in “signing space”
 - i.e. relative to the body of the signer
- **Motion**
 - i.e. “actions” of various kinds
 - change configuration and/or location
Hand Configuration

- Hand Shape – hundreds of them
- Hand Orientation
 - “finger base orientation”
 - “palm orientation”
Location (i)

- **Positions on head and body**
 - e.g. top of head, nose, neck, chest level etc.
- **Modifiers indicate**
 - position on “left-centre-right” spectrum
 - “contact distance”
 - • touching, close, normal, far
Location (ii)

- **Positions on (non-dominant) arm and hand**
 - e.g. upper arm inside of elbow, ball of thumb, middle-joint-of-ring finger
Motion – Main Features

- **Absolute** – i.e. “targeted”
 - new hand position and/or
 - new hand configuration
- **Relative**
 - direction of motion from initial configuration
 - implicit target
 - ... a “normal” distance
Motions – Composition

• **Temporal Sequence**
 - of distinct motions and/or
 - repetition of a single motion
 • *single or multiple*

• **Parallel**
 - i.e. several motions over a single temporal interval
Directed Motion – Variants

- **Straight**
- **Curved**
 - small, medium or large curvature of arc
- **Wavy and Zig-zag**
- **Circular and Elliptical**
 - varying no. of rotations
- ... All with varying direction/orientation
Motion – Modality

- Fast
- Slow
- Rest – “Stoppage at start”
- Tense
- Sudden Halt
HamNoSys Example

DGS (German) Sign: “GOING-TO”
XML

- **Represent Structured and “Semi-Structured” Data**
- **Textual Form**
 - tailored to transmission over WANs/Internet
- **An XML Document**
 - must be well-formed
 - may also be valid
 - *structure respects Document Type Definition – DTD (document may be “self-describing”)*
XML Format

• Use “nested labelled bracket” structure to delimit elements
 – represent “brackets” by tags:
 `<myelement ...> ... </myelement>`

• Element:
 – may contain sub-elements and/or text
 – may have named attributes

• DTD defines for each element type:
 – content model
 – permitted attributes
Current SiGML Definition

- **Covers “Manual” subset of HamNoSys**
- **Embodied in SiGML DTD**
- **Two versions**...
- **“Initial” SiGML**
 - DTD as close as possible to HamNoSys
 - **rich in grammatical ambiguities**...
 - i.e. multiple ways of expressing the same thing
- **SiGML**
 - eliminates many of these ambiguities
DGS: "GOING-TO"

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE sigml SYSTEM "sigmlv0.dtd">
<sigml>
 <avatar url="Simon.ava" id="A" alt="Simon"/>
 <sign gloss="GOING-TO">
 <!-- Taken from Hamnosys 2.0 manual, p.42, top line. -->
 <hamnosys_sign lr_symm="parallel">
 ...
 </hamnosys_sign>
 </sign>
 ...
</sigml>
"GOING- TO" - contd.

<hamnosys_sign lr_symm="parallel">
 <handposture
 handshapeclass="ham_finger2"
 thumbpos = "ham_thumb_outmod"
 extfidir="direction_uo"
 palmor="direction_l">
 </handposture>
</par_movement>
</hamnosys_sign>
SiGML – Current State

- **Supporting tools**
 - translate from HamNoSys
 - use XSLT (for the second stage)

- **Definition – to come:**
 - non-manual enhancements
 - *more than HamNoSys*
 - multiple “tiers”
 - *allow units bigger than a single sign*
Stages – Animation

1. NL (English)
2. Semantic Representation
3. Morphology (Sign-Language Specific)
4. Signing Gesture Notation (SiGML)
5. Animation
Animation

• **Pure Synthesis from SiGML is possible**
 - motion is “robotic”
 - improve by use of appropriate non-linear interpolation

• **But Motion Capture gives authenticity**
 - Conjecture: Best result will come from a combination of purely synthetic and motion-captured elements.